WORKSHOP: EPD, THE CURRENT DEBATE AND CHALLENGES BRUSSELS, 10 DECEMBER 2015

END OF LIFE - MODULE C AND D

DR. IR. ARCH. LISA WASTIELS - LISA.WASTIELS@BBRI.BE

DIVISION OF SUSTAINABLE DEVELOPMENT AND RENOVATION
BELGIAN BUILDING RESEARCH INSTITUTE

OVERVIEW PRESENTATION

- Introduction LCA and module D
- Important concepts
- Modelling module D
- Building case study
- PEF approach recycling
- Discussion and conclusions

Construction Products Europe : EPD challenges | Modules C and E BBRLL Sustainable Development I Lisa WASTIFLS

INTRODUCTION | **EUROPEAN INITIATIVES**

Different European initiatives

- Construction products regulation
 - BWR 3 Hygiene, health and the environment
 - BWR 7 Sustainable use of natural resources
- Resource efficiency opportunities in building sector COM(2014) 445
 - Focus on resource use and reduction of environmental impact of buildings
- Closing the loop An EU action plan for the Circular Economy COM(2015) 614/2
 - Ecodesign focusing on issues such as reparability, durability, upgradability, recyclability, or the identification of certain materials or substances
- Product environmental footprint (PEF)
 - Stimulating the use of "green" products by a harmonised communication
 - LCA methodology (not construction specific)
- ISO TC59 / SC17 : Sustainability in building construction
 - Environmental declaration of building products and environmental performance of buildings
- CEN TC 350 : Sustainability of construction works
 - European framework standardisation LCA

BRRI I Sustainable Development I I isa WASTIFI S

INTRODUCTION | END OF LIFE

End-of-life stage in EN15804/15978

- Starts when construction product is replaced, dismantled or deconstructed
- Includes
 - De-construction, demolition (C1)
 - Transport to waste processing (C2)
 - Waste processing for reuse, recovery and/or recycling (C3)
 - Disposal (C4)
- System boundary when reaching the end-of-waste state
 - → See further

Construction Products Europe : EPD challenges | Modules C and I

7

INTRODUCTION | MODULE D

Module D in EN 15804 / EN 15978

- = environmental **loads and benefits beyond** the buildings life cycle resulting from...
 - recycling of materials
 - reuse of products
 - (recovery of) energy leaving the product system

Construction Products Europe : EPD challenges | Modules C and D
BBRU | Sustainable Development | Lisa WASTIELS

IMPORTANT CONCEPTS | ALLOCATION

100:0 allocation (within system boundary) – Recycled Content Approach

- Secondary materials and fuels in the production phase of the product system are considered
- Waste processing during any module of the product system included within the system boundary

Module D (beyond system boundary) – optional (Avoided Impact Approach)

- = <u>net environmental benefits or loads</u> resulting from the reuse, recycling and energy recovery related to their net output flow
- ADDING impacts related to the recycling or recovery process from beyond the system boundary – up to the functional equivalence
- SUBTRACTING impacts resulting from the avoided production from primary resources
- Applying a justified value-correction factor to reflect the differences in functional equivalence

Construction Products Europe : EPD challenges | Modules C and D

MODELLING MODULE D | COMPLEXITY Functional equivalence

"secondary material [...] can be declared as substituting primary production [...] when it has reached functional equivalence of the substituted primary material"

Difficulty

cannot always be defined unambiguously

- Recycling potential not always clear
 - which material is it substituting?
- Possibility of different recycling routes
 - e.g. recycling of glass
 - → used for production of float glass
 - → used for production of glass wool insulation
- Possibility of different substituting materials
 - e.g. secondary concrete aggregates for roadworks
 - → substituting: river aggregates
 - → substituting: aggregates crushed at local mine

MODELLING MODULE D | COMPLEXITY

Strong insights in primary and secondary production processes needed

- Yield
 - e.g. 1kg steel scrap produces less than 1kg secondary steel
- Value correction factor
 - E.g. secondary plastic can only be used in lower grade applications (downcycling)
- Theoretical primary production process
 - e.g. glass cullets are used for production of primary float glass
 - e.g. steel scrap is used in "primary" production of steel
- Impact of « recycling process » (e.g. transport, grinding,...)

Wastiels, L., Van Dessel, J., & Delem, L. (2013). Relevance of the recycling potential (module D) in building LCA: A case study on the retrofitting of a house in Seraing. In Proceedings of SB13, Sustainable Building Conference, Graz, September 25-28 (pp. 955–964). Graz. Best Paper Award.

In Proceedings of SB14, Sustainable Building Conference, Barcelona, October 28-30. Barcelona. (Fast track Best paper SB13)

Wastiels, L., Delem, L., & Van Dessel, J. (2013). To module D or not to module D? The relevance and difficulties of considering the recycling potential in building LCA. In Proceedings of LCA Conference 2013, avniR, Lille, November 4-5. Lille.

BUILDING CASE STUDY

CASE STUDY | INTRODUCTION

Module D

- Not often included in building LCA
- Argued to be important for metals
- What is impact for other building materials?

Relevance of including module D in building LCA?

- Impact compared to other life cycle stages
- Discussion of module D impact
- → Case study analysis

Construction Products Europe : EPD challenges | Modules C and E

CASE STUDY | METHODOLOGY LCA

Life cycle assessment at building level

- Cradle-to-grave
- Including module D

Methodology

- Principles ISO 14040, EN15804, EN 15978
- Software Simapro, Ecoinvent v2.2
- Impact method: ReCiPe Endpoint / Hierarchist
- RSL of 60 years
- Including replacement for SL < RSL
- Excluding technical installations
- EOL scenarios based on Belgian average (current)

Construction Products Europe : EPD challenges | Modules C and D
BBRU | Sustainable Development | Lisa WASTIELS

CONCLUSIONS AND DISCUSSION

Module D in building LCA

- Consideration of module D can be significant in building LCA
- For case study:
 - Module D > transportation phase, EOL
- BUT...
- In this case, potential benefits strongly related to use of metals
- Further study is needed (e.g. benefits from energy recovery or export)
- High recycling rate ≠ high module D impact
- → does not necessarily tell something about recycling potential
 - Market supply and demand

Construction Products Europe : EPD challenges | Modules C and D

48

CONCLUSIONS AND DISCUSSION

Points of attention in calculating module D

- End of waste point
- Functional equivalence
- Data availability production process
- → Construction product manufacturer is in best position to provide information
 - More complex in case of open loop recycling
 - Context of circular economy, "design of EoL stage"

BBRLL Sustainable Development LLisa WASTIFLS

CONCLUSIONS AND DISCUSSION

Methodological issues

- Different allocation methods
 - recycled content approach 100:0
 - avoided impact approach 0:100
 - 50:50 approach
- Recycled content
 - Polluter pays principle
 - Current practice
 - No benefits from recycling potential
- Avoided impact
 - Impacts for virgin production
 - "Potential for recycling" consider long building life time!
 - \rightarrow Dangerous assumption because direct implications of primary production are compensated over recycling cycle
- → Results from PEF pilots to be awaited + Need for more practical examples

onstruction Products Europe : EPD challenges | Modules C and D

50

WORKSHOP: EPD, THE CURRENT DEBATE AND CHALLENGES BRUSSELS, 10 DECEMBER 2015

QUESTIONS?

DR. IR. ARCH. **LISA WASTIELS** – <u>LISA.WASTIELS@BBRI.BE</u>

DIVISION OF SUSTAINABLE DEVELOPMENT AND RENOVATION BELGIAN BUILDING RESEARCH INSTITUTE

